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Abstract

When rating-curves of the formQ� g�h 1 a�b are fitted by least-squares, goodness of fit as measured by the coefficient of
determinationr2 is often close to 1, suggesting that estimated discharges have high precision. This can be illusory if (a) no
account is taken of the uncertainty in estimate of the parametera , and/or (b) the stageh at which discharge is to be estimated is
such that loge�h 1 a� lies far from the mean value of this variable calculated using the data points (h,Q) that define the rating-
curve. Furthermore, since the annual maximum discharges in anyM year period of record are all estimated from the fitted
rating-curve, they will be correlated, even if the annual maximum stages in theM years are statistically independent. The usual
maximum likelihood procedures for fitting extreme-value distributions do not take account of this correlation. Expressions are
given for the conditional (on the values of theM annual maximum stages) and unconditional variances of the mean annual flood
�Q which take account of rating-curve uncertainties.q 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Since direct measurement of discharge in river
channels can be time-consuming and costly, flow is
commonly estimated indirectly by means of a curve
relating stage (water level) to discharge. Typically,
flow is measured using a current-meter atN times
when stage is also measured; it is reasonable to
assume that errors in the measurement of stage are
small compared with errors in the measurement of
discharge. Thus the rating-curve can be regarded as
a relation fitted toN points�hi ;Qi�; i � 1;2;…;N; the
measured stagehi and corresponding measured
dischargeQi recorded onN occasions. From hydraulic
principles, the form of the rating-curve is usually

taken asQ� g�h 1 a�b (Lambie, 1978; Mosley and
McKerchar, 1993), a curve involving the three para-
metersa , b and g , although other more empirical
forms are sometimes used (Mosley and McKerchar,
1993). To estimate the parameters, the curve is
commonly rewritten as loge Q� loge g 1 b loge�h 1
a�; a series of values is assumed fora , and the regres-
sion of loge Q on loge�h 1 a� is calculated for each.
The value ofa , a say, is identified for which the sum
of squared residuals about the regression line is smal-
lest, and this regression line then gives estimates of
the remaining two parametersb and loge g . If there is
a change of control when stage reachesh0 say, para-
metersa1,b1, g1 anda2,b2, g2 can be fitted to theN1,
N2 points in the two sections of the rating-curve,
subject to the constraint that the two fitted lines
loge Q� loge gi 1 bi loge�h 1 ai� �i � 1;2� inter-
sect whereh� h0 (Tocher, 1952; Williams, 1959).
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This paper deals with the simpler case where the
rating-curve consists of one section only, and concen-
trates on the estimation of high flows rather than low
flows.

When, after log transformation, the rating-curve is
fitted by regression analysis witha having been deter-
mined by trial and error, the goodness of fit as
measured by the coefficient of determinationr2 can
be very high, often over 95%. This may give a feeling
of security that high flows are determined with good
precision, but the security may be illusory for two
reasons. Suppose that the precision of estimated
high flows Q is measured by calculating (say) a
95% confidence interval. Then if this interval is deter-
mined using standard results from linear regression
analysis of loge Q on loge�h 1 a�; its width will be

underestimated if no account is taken of the error
involved in estimating the parametera . Secondly,
the width of confidence interval for theQ estimated
at a given stageh depends on the distance between (i)
loge�h 1 a� and (ii) the mean of theN values loge�h 1
a� from which the rating-curve was calculated; the
larger this distance, the wider the confidence interval
for any discharge estimated from the rating-curve. If
the stageh lies outside the range of theN stages
h1;h2;…;hN; so that extrapolation of the rating-
curve is required, the errors will be greater still.
Such extrapolation is not at all uncommon, particu-
larly in developing countries where conditions of site
access and logistics make it difficult to gauge
discharge when water levels are very high.

To illustrate what can happen, data were used from
10 gauging stations in the basin of the river Ibicuı´. The
Ibicuı́ is a tributary of the river Uruguai, which is itself
a tributary of the la Plata river, the second-largest
drainage basin on the South American sub-continent.
For each station, pairs of values of water levelh, and
corresponding dischargeQ obtained by current-meter-
ing, were available, and Table 1 gives details of the
gauge sites, of the number of pairs (h,Q) available at
each gauging station, and the value ofr2 obtained by
least-squares fitting of loge Q to loge�h 1 a�; the esti-
matea of the parametera being obtained by trial and
error and its error of estimation ignored.

With the exception of the river Toropı´ at Cachoeira
5 Veados, the values ofr2 given in Table 1 all exceed
90%, suggesting that the rating-curves are well deter-
mined; even at this one exceptional station, the value
of r2 is a not-unrespectable 87.7%. These high values

R.T. Clarke / Journal of Hydrology 222 (1999) 185–190186

Table 1
Details of 10 gauging stations in the Ibicuı´ drainage basin, drainage areas (km2), numbers of points�h;Q� available for rating-curve determina-
tion, and values ofr 2 obtained ignoring error ina, the estimate of the parametera in loge Q 2 loge g 1 b loge�h 1 a�

River Gauging station Area (km2) No. of points r2

Ibicuı́ Passo Santa Vito´ria 5679 213 92.2
Ibicuı́ Alegrete 27771 159 96.1
Ibicuı́ Manoel Viana 29321 185 95.7
Ibicuı́ Passo Mariano Pinto 42498 146 94.7
Ibirapuitá Alegrete 5942 314 98.4
Toropı́ Cachoeira 5 Veados 1635 51 87.7
Toropı́ Vila Clara 2783 272 94.2
Toropı́ Ponte Toropı´ 3310 287 92.5
Jaguarzinho Ernesto Alves 933 269 94.0
Jaguarzinho Passo de Jaguarzinho 1345 194 94.4

Table 2
Number of years of record,N, and the number of yearsG in which
the annual maximum water levelh exceededhmax, the maximum
water level for which current-metering had been undertaken
(gauging stations given in the order shown in Table 1)

Station N G G/N(%)

1 39 29 74
2 17 15 88
3 23 3 13
4 36 14 39
5 47 19 40
6 17 17 100
7 50 32 64
8 19 14 74
9 35 33 94
10 14 14 100
Mean 68.6



of r2 give a false impression, however, of the precision
with which discharges are estimated, as the following
shows.

For the 10 stations of Table 1, Table 2 shows (a) the
number of years of record, and (b) the number of years
in which the annual maximum water levelh exceeded
hmax, the maximum water level for which current-
metering had been undertaken.

Thus in about 2 years of record in 3, on an average,
the maximum water level in the year exceeds the maxi-
mum water levelhmax at which discharge was current-
metered,so that some formof rating-curveextrapolation
is necessary. We now look at the magnitudes of the
errors in estimating discharge, in the absence of such
extrapolation, by calculating a 95% confidence interval
for the estimated dischargeQmax, which corresponds to
hmax. Clearly this involves no extrapolation of the rating-
curve beyond the range of observed water levels; uncer-
tainties due to extrapolation to stages higher thanhmax

will therefore be even greater than the uncertainties in
the estimate ofQmax.

It is necessary to mention two points here. The first
is that errors in discharges estimated from fitted
rating-curves can arise from two sources: (i) error
due to incorrect form of the rating-curve, and (ii)
errors of estimation arising from scatter of observed
points {h,Q} about the fitted curve. This note is
concerned only with errors of type (ii): it is assumed
that the hydraulic justification for use of rating-curves
of the familyQ� g�h 1 a�b is sufficiently strong for
this source of error to be ignored. The second point is
that rating-curves are often determined from measure-
ments {h,Q} spread over a period of time extending
perhaps to 10 or 20 years, during which time the curve
may change due to factors such as deposition of sedi-
ment or erosion of the channel bed. In practice, it will
be necessary to sub-divide the data set {h,Q} for the
whole period into smaller periods. Curves would be
fitted separately to the data from each sub-period, and
statistical procedures used to determine whether the
estimated values ofa , b and g differ significantly
between sub-periods. This problem is not dealt with
in the present note.

2. 95% Confidence intervals forQmax

We take first the question of calculating 95%

confidence intervals forQmax estimated on the
assumption that the constanta in loge Q� loge g 1
b loge�h 1 a�1 e is free from error. For the purpose
of calculating confidence intervals, it is assumed that
the residuals about the fitted relation have a normal
distribution with constant variance: analysis suggests
that these assumptions are not unreasonable. Then
regression theory shows that the standard error of
the estimated loge Qmax corresponding tohmax is the
square root of

s2�1 1 1=N 1 {loge�hmax 1 a�2 M} 2
=Sxx� �1�

where N is the number of data pairs�hi ;Qi�; i �
1;…;N available for estimating the rating-curve,M
is the mean of theN values loge�hi 1 a�; i �
1;…;N; Sxx the sum of squared deviations of loge�hi 1
a� about their mean valueM, ands2 is the variance of
residuals about the fitted relation (equal to the sum of
squared residuals divided byN 2 2). Denoting this
expression by SE2, approximately 95% confidence
limits for loge Qmax are {loge Qmax^ 2SE2} and for
Qmax, {exp�loge Qmax^ 2SE2�} : These limits,
however, make no allowance for uncertainty in the
estimatea of the parametera . We call these limits
the limits obtained from the two-parameter model.

Because of the normality assumption, all three
parameters loge g , b anda can of course be estimated
simultaneously by maximum likelihood, the second
derivatives of the log likelihood function providing
the matrix of variances and covariances of loge C, b
anda, the estimates of loge g , b anda . From these
variances and covariances, the variance of the esti-
mated loge Q̂max can be calculated as

s2 1 var�loge C�1 �loge�hmax 1 a��2 var�b�

1 �b=�hmax 1 a��2 var�a�1 2loge�hmax 1 a�
� cov�loge C;b�1 2b=�hmax 1 a� cov�loge C; a�
1 2�loge�hmax 1 a���b=�hmax 1 a�� cov�a;b� �2�

wheres2 is the sum of squared residuals divided by
N 2 3. If covariances involvinga are deleted from Eq.
(2), the resulting expression is equivalent to Eq. (1). If
the square root of the variance in Eq. (2) is denoted by
SE3, an approximate 95% confidence interval forQmax

is exp�loge Q̂max^ 2SE3�: The triplets of numbers
shown in Table 3 denote, respectively, the lower
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95% confidence limit (approximate) for the estimated
Qmax; the estimatedQmax itself; and the upper 95%
confidence limit (approximate) for the estimated
Qmax. Triplets are given for both the two-parameter
and three-parameter rating-curves.

The features of Table 3 are: (a) the 95% confidence
limits for Qmax are wide, even for the two-parameter
model; (b) the 95% confidence interval become appre-
ciably wider still, when allowance is made for the
uncertainty in estimating the parametera of the
rating-curve. Recall also that the estimated discharges
Qmax presented in Table 3 have not required extrapo-
lation of the rating-curve beyond the range of water
levels h for which discharges were measured by
current-metering; where extrapolation is the only
means of obtaining an estimate of discharge (and
Table 2 shows the frequency with which such extra-
polation may be required), the uncertainty in the
estimated discharges will be greater still.

3. Correlation between annual maximum
discharge resulting from rating-curve use

After the rating-curveQ� g�h 1 a�b has been
fitted to the N points �hi ;Qi� i � 1;…;N; it is
frequently used to estimate the annual maximum
discharges in a sequence ofM years of stage record.
Thus a sequence ofM annual maximum stages
h1;h2;…;hM is converted into a sequence of annual
maximum dischargesQ1;Q2;…;QM : Except for very

large basins with extensive over-year storage, it will
be reasonable to take the annual maximum stages
h1;h2;…;hM as statistically independent; however,
since the annual maximum dischargesQ1;Q2;…;QM

are all estimated from the same rating-curve, they will
be correlated, and not statistically independent.
Suppose that the variance–covariance matrix of the
estimatesC, a andb of g , a , b is V, given by

V �
vCC vCa vCb

vaC vaa vab

vbC vba vbb

2664
3775

recalling thatvCC � var�C� � C2 var�loge C�; vCa �
cov�C; a� � C cov�loge C;a�; vCb � cov�C;b� �
C cov�loge C;b�: Then for any two estimated maxi-
mum discharges in the sequence,Q̂i � C�hi 1 a�b and
Q̂j � C�hj 1 a�b say, the large-sample covariance of
Qi andQj is

cov�Q̂i ; Q̂j� � LT
i VL j �3�

where

LT
i � �2Qi =2C; 2Qi =2a; 2Qi =2b�:
Thus whenN, the number of points�hi ;Qi� avail-

able to determine the rating-curve is large, the corre-
lation betweenQ̂i andQ̂j is

corr�Q̂i ; Q̂j� � LT
i VL j =

��������������������
�LT

i VL i ·LT
j VL j�

q
:

PuttingQi � C�hi 1 a�b; L T is given explicitly as

��hi 1 a�h; Cb�hi 1 a�b21
; C�hi 1 a�b loge�hi 1 a��:

where, say, an extreme-value or other distribution
f �Q; u� is to be fitted by maximum likelihood to the
sequenceQ1;Q2;…;QM of estimated annual maxi-
mum discharges, the usual procedure for estimating
the assumed distribution’s parametersu does not take
account of this correlation, treating the sequence of
annual maxima as if eachQi were statistically inde-
pendent of the others. This assumption then gives a
likelihood function that is a product of thef �Qi ; u�: If
the correlations between theQi ; Qj were taken into
account, the likelihood function would be consider-
ably more complicated. It is worth noting, too, that
estimatingu by the method of moments is unaffected
by the presence of correlations between the estimated
Qi andQj :
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Table 3
Approximate 95% confidence limits (lower limit: left-hand value of
the triplet; upper limit: right-hand value) forQmax, given by the two-
and three-parameter rating-curves (units are m3 s21)

Station Two-parameter rating-
curve (uncertainty ina
ignored)

Three-parameter rating-
curve (uncertainty ina
included)

1 {267, 583, 1273} {250, 583, 1359}
2 {1127, 1770, 2779} {961, 1770, 3258}
3 {2515, 4046, 6509} {2085, 4046, 7853}
4 {2806, 4335, 6699} {2049, 4335, 9172}
5 {655, 920, 1291} {560, 920, 1511}
6 {125, 298, 707} {72, 298, 1236}
7 {218, 420, 812} {199, 420, 886}
8 {249, 502, 1012} {237, 502, 1065}
9 {363, 633, 1104} {299, 633, 1341}
10 {93, 163, 287} {81, 163, 323}



The values of the correlations between theQ̂i and
Q̂j were calculated for the sites listed in Table 1. For
each site, the three parametersa , b and loge g were
estimated by maximum likelihood, and three values of
water levelh were taken: the first two lay about one-
third and two-thirds of the distance between the mean
value hmean (the mean of theh-values used to fit the
rating-curve) andhmax as previously defined, and the
third lay at or slightly belowhmax. Table 4 shows
the values ofhmean and hmax at each of the 10 sites,
and the correlations between thêQi and Q̂j { i; j �
1;2; 1; 3;2; 3} ; the discharges estimated at the three
water levels.

Table 4 shows that the correlations between
discharges estimated from stage-discharge relations
fitted by maximum-likelihood are not always negligi-
ble. It also shows, as is to be expected, that the corre-
lation is greater where the water levelshi andhj are
both distant from the mean valuehmean. To explain
why this is so, consider the linear regression of a
dependent variable,y, on an independent variablex,
and thaty is estimated for twox-valuesxi and xj ;

giving ŷi and ŷj : If s2 denotes the residual variance,
N the number of data-pairs {xi ; yi} ; andSxx the sum of
squared deviations

P�xi 2 �x�2; the covariance
betweenŷi and ŷj is

cov�ŷi ; ŷj� � s2�I =N 1 �xi 2 �x��xj 2 �x�=Sxx�

so that for�xi 2 �x� and �xj 2 �x� both large and posi-
tive, the covariance will also be large and positive.

The same kind of argument explains whyr13 in
Table 4 is greater thanr12, and why r23 is greater
thanr13.

4. Variance of the mean annual flood�Q

Section 3 showed that, conditional on the annual
maximum water levelshi �i � 1; 2;…;M�; the annual
maximum dischargeŝQi �i � 1;2;…;M� estimated
from the rating-curve constitute a correlated
sequence, such that the correlation between any two
values in the sequence does not decrease as the time
separating them increases.

Consider now the variance of the mean annual flood
�Q� P

Qi =M; conditional on the observed sequence
h1;h2;…;hM : The variance–covariance matrix of the
estimatedQ1;Q2;…;QM is W, with �i; j�-th element
LT

i VL j , and the conditional variance of�Q is therefore

var� �Quh1; h2;…; hM� � 1TW1=M2

where1T � �1;1;…;1�; a vector havingM elements
equal to 1. If it is appropriate to consider the annual
maximum stagesh1;h2;…;hM as a random sample
from a statistical population ofh values, denoted by
f �hi ; û �; there will be greater interest in the uncondi-
tional variance var� �Q�: A result relating unconditional
and conditional expectations (see, for example Feller,
1972) says that

var� �Q� � E�var� �Quh1;h2;…;hM��
1 var�E� �Quh1;h2;…;hM��: �4�

The first expression on the right-hand side takes
var� �Quh1; h2;…; hM� � 1TW1=M2

; multiplies it by
the product

QM
i f �hi ; û �;—assuming that annual

maximum stages are statistically independent—and
integrates the result with respect toh1;h2;…; hM :

The second expression takes the expected value of
�Q; which is a function of the estimatesC, a, b of the
parametersg , a , b with variance–covariance matrix
given by V above, so that the argument
var�E� �Quh1; h2;…; hM�� has a form likeL TVL ; its
evaluation is straightforward. If theh1;h2;…;hM are
not statistically independent, evaluation of the first
term on the right-hand side of Eq. (4) becomes more
difficult. Certainly the assumption of independent
h1;h2;…;hM ceases to be valid for some large basins;
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Table 4
Correlationsr12, r23, r13 between three discharges estimated using
the three-parameter rating-curve fitted at each of 10 sites listed in
Table 1 (the discharges were estimated for stagesh1; h2;h3 lying
approximately at hmean1 1=3�hmax 2 hmean�; hmean1 2=3�hmax 2

hmean�; andhmax; units ofhmeanandhmax are cm)

Site hmean hmax r12 r13 r23

1 190 550 0.092 0.105 0.137
2 314 660 0.293 0.309 0.401
3 411 1054 0.221 0.248 0.405
4 263 833 0.280 0.300 0.563
5 309 1215 0.411 0.436 0.497
6 81 260 0.400 0.426 0.577
7 236 1050 0.134 0.151 0.197
8 353 787 0.072 0.083 0.109
9 80 356 0.273 0.308 0.550
10 185 396 0.126 0.144 0.279



the 95 year record of daily stage of the Alto Paraguai
at Ladário, for example, shows that the correlation
between annual maximum stages is 0:416^ 0:103,
much greater than would be expected on the basis of
chance. Monte Carlo evaluation of the first term in Eq.
(4) then becomes unavoidable.

5. Extension

Similar arguments to those above can be extended
to calculate the uncertainties arising from rating-curve
use in (a) mean annual flows; (b) 7-day minimum
flows with given return period, which involve consid-
eration of uncertainties in discharges estimated at the
‘bottom’ end of the rating-curve; (c) yields of
suspended sediment from drainage basins, which
involve the use of two rating curves simultaneously:

one relating discharge to stage, the other relating sedi-
ment concentration to discharge estimated from the
stage–discharge relation.

References

Feller, W., 1972. An Introduction to Probability Theory and its
Application, Wiley, New York.

Lambie, J.C., 1978. Measurement of flow—velocity–area methods.
In: Herschy, R.W. (Ed.). Hydrometry: Principles and Practices,
Wiley, Chichester chap. 1.

Mosley, M.P., McKerchar, A.I., 1993. In: Maidment, D.R. (Ed.).
Streamflow: Handbook of Hydrology, McGraw-Hill, New York
chap. 8.

Tocher, K.D., 1952. On the concurrence of a set of regression lines.
Biometrika 39, 109–117.

Williams, E.J., 1959. Regression Analysis, Wiley, London.

R.T. Clarke / Journal of Hydrology 222 (1999) 185–190190


